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ABSTRACT 

This article presents a new method of characterizing calorimeters based on the Z transform 
of the system’s unit pulse response. Results are presented for various signal-to-noise ratios. As 
well as giving numerical values for the parameters of the calculator, the method proposed 
determines the optimal number of such parameters for the description of the system. 

INTRODUCTION 

Deconvolution techniques currently employed in conduction calorimetry 
require adequate previous characterization of the calorimeter system. The 
first attempts at identification [l] started by considering the calorimeter as a 
set of interconnected physical elements whose number, and the number and 
nature of whose interconnections, depend on the complexity of the model 
being used. In spite of the difficulty of determining the large ‘number of 
parameters involved, this approach is still in use at present [2]. 

Another way of attacking the problem is to start from the general theory 
of linear systems. This approach has been intensively developed in recent 
years [2-61 and in both time and frequency domains has produced the 
characterization techniques chiefly employed nowadays [7]: least-squares 
estimation of the unit pulse response of the calorimeter [8,9], identification 
by PadC approximations [lo], the use of modulating functions [ll] and 
identification by Mellin deconvolution [12]. 

This article describes a new method of determining calorimeter parame- 
ters using the,Z transform of the unit pulse response of the calorimeter. This 
method is particularly suitable for processing experimental data collected at 
equal time intervals, and furthermore allows the optimal number of parame- 
ters for the description of the system to be calculated. 

* Author for correspondence. 
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THEORY 

The unit pulse response of a calorimeter may be expressed [8] in the form 

h(t)=S iA,exp(-r/r,) 
I 1 (1) i=l 

where the 7; (i= l,..., n) are the time constants of the calorimeter, S is its 
sensitivity, and the amplitudes Ai are given by 

A;=r,“-“-2 r--j (q-5*)/q (ri-rk) L m,<n-2 (2) 
j=l i;; 

where the T* (j= l,..., m) are the time constants associated with the zeros 
of the calorimeter transfer function. The sensitivity S is found by simply 
integrating the experimental data, for 

s “h(f) dt=S 
0 

S is therefore the known parameter. In what follows it will be assumed that 
s= 1. 

Since after digital sampling our knowledge of the calorimeter response is 
limited to a succession of values h[k] (k = 0,. . . , N), each separated from the 
preceding one by the same time interval T (the sampling period), eqn. (1) is 
more conveniently expressed in the form 

h[ k] = c Ai exp( -kT/T,) k=O,l,...,N 
i=l 

where n, m and the time constants ri and 7;” (a total 
parameters) are to be determined. 

The Z transform of a succession of values h[k] is defined [ 
cc 

H(z)= c h[k]z-k 
k=O 

Applying this transform to eqn. (4) yields 
co n n cc 

(4 

of n+m+2 

13-151 by 

(5) 

H(Z) = C C Ai exp( - kT/T,)zek = C Ai C pFzwk (6) 
k=O i=l i=l k=O 

where pi = exp( - T/T,). Since the inner sum on the right-hand side of eqn. 
(6) is the sum of a geometric progression of ratio pizP1, H(z) may be written 

H(z) = 5 A,z,(z -pi) (z 2 1) (7) 
i=l 

Since an experiment of finite duration only yields N values of h[k], the 
expression given in eqn. (5) for H(z) cannot be calculated, but only 

H*(z)= ; h[k]z-” (8) 
x-=0 
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so that 

H(z)=H*(z)+A(z) (9) 

where 
00 n cc 

A(z)= c h[k]z-k= zAi c p;~-~ 
k=N+l i=l k=N+l 

Note that 

A(z) = $ A,p”“z-“/(z -pi) (z >, 1) (11) 
i=l 

Note that calculation of the Z transform of the experimental data involves 
only a finite summation of easily calculated terms. Other methods of 
characterization in the frequency domain require calculation of Laplace 
transforms of the form 

H(s) =Jmh(t) exp( -st) dt 
0 

(12) 

thereby introducing additional error during the numerical integration. 

METHOD 

The first step is to find the calorimeter’s sensitivity and divide all the 
experimental data by the value obtained so as to reduce the sensitivity factor 
of the unit pulse response to unity. 

Secondly, an exponential term of amplitude, A,, comparable with the 
expected values of Ai and time constant, 7,, larger than any value expected 
for 7i, is added to the experimental data. This added term will enable the 
adequacy of each pair of values (n, m) to be estimated. With A, and TV there 
are now n + m + 4 parameters to be determined. The procedure from this 
point on is as follows. 

(1) Calculate H*( zj) from eqn. (8) for sufficient values of zj (j = 1,. . . , L). 

Excellent results have been obtained with L = 20 and 1 G z < 2. 
(2) Since the number of exponentials in the calorimeter’s unit pulse 

response is at least two, and since m Q n - 2, the initial values n = 2 and 
m = 0 are set up. 

(3) Initial estimates for the remaining n + m + 2 parameters are set up. 
For A, and 7s the known exact values are, of course, used, and estimates of 
the others can be found by a “peeling off’ procedure [16]. 

(4) Using the initial values introduced in steps 2 and 3, H(zj) and A(zj) 
are calculated from eqns. (7) and (11) for all zj (j = 1,. . . , L). 
(5) The squares error sum 

J=,il [H(zj)-H*(zj)-A(zj)]’ 
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is minimized with respect to the unknown parameters (including A, and rS 
but excluding n and m). J has its minimum at values of these parameters 
which are optimal estimates given the current values of the pair (n, m). 

(6) The adequacy of the values of n and m is evaluated by comparing the 
estimated values of A, and rS calculated in step 5 with their known true 
values and calculating 

d(n, m)=lOO([A,(n, m)/A,j2+[A,(n, m)/7s]2)1’2 (13) 
where AA( n, m) and A,( n, m) are the differences between the estimated and 
true values of A, and r,, respectively. If the minimum of d( n, m) appears to 
have been reached (see examples below) the algorithm may be halted and the 
corresponding values of n, m and the other parameters taken as optimum 
estimates. 

(7) If the algorithm is not halted in step 6, the pair (n, m) is incremented 
(following the order (2, 0), (3, 0), (3, l), (4, 0), (4, l), (4, 2), etc.) and the 
algorithm returns to step 3. 

EXAMPLES 

A Hewlett-Packard HP-9845B computer was used to identify the unit 
pulse response defined by ri = 120 s, r2 = 60 s, 73 = 10 s and r? = 20 s. The 
procedure was repeated with several different levels of noise added to this 
signal so as to better simulate a real calorimeter response and to obtain an 
idea of the effect of noise on the performance of the algorithm. In all cases 
the sampling period, T = 1 s, the number of sample points, N = 500, 
A, = 0.01 and rS = 250 s. 

TABLE 1 

Results of identifying the time constants of a simulated unit pulse response with known true 
constants it = 120 s, TV = 60 s, r3 = 10 s and 7;” = 20 s and a signal-to-noise ratio of 40 dB. 
The solution is obtained taking n = 3 and nr = 1, since with these numbers the estimated 
values of A, and 7s are closest to their values of 0.01 and 250 s, respectively 

Values of (m, n) 

(230) (390) (3,l) (490) (491) (472) 

148.54 114.61 119.44 115.30 119.00 119.46 
42.13 51.98 60.33 54.81 61.33 60.23 

0.04 9.78 4.98 7.88 9.72 
0.02 1.29 4.01 

19.69 19.56 19.54 
4.02 

0.010576 0.009998 0.010001 0.010022 0.010006 0.010001 
233.8003 249.0481 149.8638 249.5835 249.6801 249.5601 
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Fig. 1. Values of the error function d( n, m) for various values of the arguments. The spurious 
solutions at n = 4, m = 2 and n = 5, m = 3 simply repeat the solution at n = 3, m =l, the 
extra poles being cancelled out by extra zeros of equal value. 

Table 1 and Fig. 1 show the results obtained when the noise added gave a 
signal-to-noise ratio of 40 dB. The optimal estimates of n and m indicated 
by the minimum of d( n, m) are the correct values n = 3 and m = 1, and 
these values also gave the best estimates of A, and rS independently of each 
other. The near-optimal values of n and m that are greater than the true 
value ((4, 2) and (5, 3)) may be considered as spurious solutions: the extra Ai 
introduced by raising n proves to allow near-optimal estimation only if it is 
reduced to zero by the extra 7i values being offset by an extra 7;” of equal 
value (e.g., r4 and 7; in Table 1). 

Table 2 shows the results obtained for the various noisy signals employed 
(in each case values of n = 3 and m = 1 were used). The accuracy of the 
estimated values naturally increases with the signal-to-noise ratio, but even 
with a ratio as low as 40 dB the error in the determination of the first time 
constant is less than 1%. 

TABLE 2 

Results of characterizing the signal of Table 1 when different levels of noise are present. With 
a signal-to-noise ratio of 100 dB the values calculated agree with the true values to 5 
significant figures 

S/N (dB) Time constants 

71 72 73 7;c 

40 119.44 60.33 9.78 19.69 
60 119.94 60.01 9.95 19.93 
80 119.99 60.00 9.99 19.99 

100 120.00 60.00 10.00 20.00 
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CONCLUSIONS 

The Z transform is particularly suitable for processing digital calorimeter 
data with a uniform sampling period. The use of this transform after 
addition of a known exponential term to the experimental data allows the 
optimal number of parameters for describing a given system to be obtained, 
as well as the values of these parameters. For the typical 3-pole, l-zero 
response simulated in the present article, the accuracy of these values has 
been shown to be excellent even with signal-to-noise ratios as low as 40 dB. 
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